Thursday 9th May

 Reading SATS Buster Book

TBAT: solve problems involving fractions.

$$
\text { 1. } 36548 \times 18=\underline{3 \text { in } 3}
$$

2. $2 / 9$ of $180=$
3. $9 \times 9+3 \times 3 \times 3=$

How many vertices are there on a tetrahedron?

Daily 5

1. $10 / 16-2 / 8=$
2. $25,560-_=24,000$
3. $3 / 5+2 / 15=$
4. $17 \times 4=$
5. $336 \div 8=$

TBAT: solve problems involving fractions.
Solve:
$3 / 9 \times 2 / 6=$
$4 / 5 \div 2=$
$9 \times 5 / 6=$
$3 / 6+42 / 5=$
2 $2 / 9-1 / 8=$
$1 / 12 \div 5=$

Explain how you would work out these:

$2 / 5$ of $250=$
$2 / 5 \times 250=$
09.05.24

TBAT: solve problems involving fractions.

Blue

$2 / 5 \times 4 / 9=$
$32 / 3+35 / 6=$

Green
$6 / 8 \div 4=$
$21 / 8-1 / 7=$

Add together two and a half and three and a half and four and a half.

TBAT: solve problems involving fractions.

Challenge

Solve:
$3 / 7 \div 3=$
$2 / 5 \times 3 / 6=$

Mastery

On Monday I ran $1 \frac{2}{3} \mathrm{~km}$ and on Tuesday I ran $2 \frac{2}{5} \mathrm{~km}$. How far did I run altogether on these two days?

On Wednesday I ran $1 \frac{2}{3} \mathrm{~km}$ and my sister ran $2 \frac{2}{5} \mathrm{~km}$. How much further did my sister run than I did?

Tom wrote down two fractions. He subtracted the smaller fraction from the larger and got $\frac{1}{5}$ as the answer.
Write down two fractions that Tom could have subtracted.
Tom and Sam shared equally one third of a chocolate bar. What fraction of the chocolate bar did each child get?

Mastery with GD

[^0]Thursday 9th May GPS Revision

Grammar, Punctuation and Spelling

45 minutes

Maths Intervention - Shape

Here are five shapes drawn on a grid. Write the name of each shape in the correct region in the sorting diagram.

A cube has shaded shapes on three of its faces.

Here is a net of the cube. Draw in the two missing shaded shapes. Here is an open top cube.

1. Calculate the perimeter of these shapes. They are not drawn to scale.
Perimeter $=$ \qquad cm Perimeter $=$ \qquad cm
Perimeter $=$ \qquad cm
2. Calculate the missing lengths of these shapes. They are not drawn to scale.

3. What is the area of these parallelograms?

Area = \qquad cm^{2}

Area $=$ \qquad cm^{2}
2. Circle the parallelogram with the greatest area.

7 cm

8 cm
3. What is the area of these triangles?

5 cm

Area $=$ \qquad cm^{2}
4. Circle the triangle with the smallest area.

6 cm

1. Calculate the volume of this cuboid.

Not drawn to scale.

6 cm

Volume $=$ \qquad cm^{3}
2 cm
2. Calculate the volume of this cube.

3. Estimate the dimensions of this cuboid using the given volume.
3. Estimate the dimensions of this cuboid using the given volume.

4. Which cuboid has the smallest volume? Explain how you know.

2 cm

1. What is the name of a line from the centre point of a circle to its edge?
\square
2. Peter says that his circumference is the same size as his diameter. Is this statement true or false?

This statement is true / false.
I know this because:
3. If the radius of a circle is 9 cm , what is the diameter? Explain how you know.

The diameter would be:
I know this because:

[^0]: Altogether on Monday and Tuesday I ran $3 \frac{1}{2} \mathrm{~km}$. On neither day did I run a whole number of km .

 Suggest how far I ran on Monday and how far on Tuesday.
 On Wednesday I ran some km and my sister ran $1 \frac{1}{6} \mathrm{~km}$ further than I did. Altogether we ran $4 \frac{1}{2} \mathrm{~km}$.

